MiR‐133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle‐splicer polypyrimidine tract‐binding protein 1

نویسندگان

  • Taro Sugiyama
  • Kohei Taniguchi
  • Nobuhisa Matsuhashi
  • Toshihiro Tajirika
  • Manabu Futamura
  • Tomoaki Takai
  • Yukihiro Akao
  • Kazuhiro Yoshida
چکیده

The metabolism in tumor cells shifts from oxidative phosphorylation to glycolysis even in an aerobic environment. This phenomenon is known as the Warburg effect. This effect is regulated mainly by polypyrimidine tract-binding protein 1 (PTBP1), which is a splicer of the mRNA for the rate-limiting enzymes of glycolysis, pyruvate kinase muscle 1 and 2 (PKM1 and PKM2). In the present study, we demonstrated that miR-133b reduced PTBP1 expression at translational level and that the expression levels of miR-133b were significantly downregulated in gastric cancer clinical samples and human cell lines, whereas the protein expression level of PTBP1 was upregulated in 80% of the 20 clinical samples of gastric cancer examined. Ectopic expression of miR-133b and knockdown of PTBP1 in gastric cancer cells inhibited cell proliferation through the induction of autophagy by the switching of PKM isoform expression from PKM2-dominant to PKM1-dominant. The growth inhibition was partially canceled by an autophagy inhibitor 3-MA or a reactive oxygen species scavenger N-acetylcysteine. These findings indicated that miR-133b acted as a tumor-suppressor through negative regulation of the Warburg effect in gastric cancer cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organ-specific PTB1-associated microRNAs determine expression of pyruvate kinase isoforms

The Warburg effect is a well-known feature of cancer cells. However, its' functional significance hasn't been elucidated yet. Pyruvate kinase muscle (PKM), which is a rate-limiting glycolytic enzyme, has 2 isoforms, PKM1 and PKM2. It has been reported that PKM2 is a tumor-specific isoform and promotes the Warburg effect. Also, it has been thought that tumor cells switch their PKM isoform from P...

متن کامل

PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors

It is known that pyruvate kinase in muscle (PKM), which is a rate-limiting glycolytic enzyme, has essential roles in the Warburg effect and that expression of cancer-dominant PKM2 is increased by polypyrimidine tract-binding protein 1 (PTBP1), which is a splicer of the PKM gene. In other words, PKM2 acts as a promoter of the Warburg effect. Previously, we demonstrated that the Warburg effect wa...

متن کامل

The role of microRNA-133b and its target gene FSCN1 in gastric cancer

BACKGROUND Increasing evidences have documented that microRNAs (miRNAs) act as oncogenes or tumor suppressors in gastric cancer (GC). In this study, we aimed to investigate the expression of miR-133b in a large number of GC samples and elucidate its role in GC carcinogenesis and the detailed mechanism. METHODS We used Taqman probe stem-loop real-time PCR to accurately measure the levels of mi...

متن کامل

Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes

Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneous...

متن کامل

The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells

Dysregulated splicing of pre-messenger (m)RNA is considered a molecular occasion of carcinogenesis. However, the underlying mechanism is complex and remains to be investigated. Herein, we report that the upregulated miR-92a reduced the RNA-binding motif 4 (RBM4) protein expression, leading to the imbalanced expression of the neuronal polypyrimidine tract-binding (nPTB) protein through alternati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 107  شماره 

صفحات  -

تاریخ انتشار 2016